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Possible dependencies of serial learning data on physiological parameters such as 
spiking thresholds, arousal level, and decay rate of potentials are considered in a 
rigorous learning model. Influence of these parameters on the inverted U in learning, 
skewing of the bowed curve, primacy vs. recency, associational span, distribution of 
remote associations, and growth of associations is studied. A smooth variation of 
parameters leads from phenomena characteristic of normal subjects to abnormal 
phenomena, which can be interpreted in terms of increased response interference and 
consequent poor paying attention in the presence of overarousal. The study involves 
a type of biological many-body problem including dynamical time-reversals due to 
macroscopically nonlocal interactions. 
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1. I N T R O D U C T I O N  

This p a p e r  studies some possible  dependencies  o f  serial learning da t a  on several 
under ly ing  physiologica l  parameters .  W e  suggest tha t  a smoo th  var ia t ion  o f  these 
pa ramete r s  can lead f rom serial da t a  character is t ic  of  no rma l  learning subjects to da ta  
ana logous  to  cer ta in  forms of  a b n o r m a l  behavior .  These facts have been previously  
announced.  (1) 

Our  studies analyze a r igorous ly  defined learning ne twork  rig' having  a suggestive 
psychological ,  neurophysio logica l ,  ana tomica l ,  and  b iochemica l  in te rpre ta t ion  (2-4). 
~g  was derived ~2) f rom an analysis o f  how a machine,  or  learning subject,  could  
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eventually predict an event B in response to an event A after practicing the sequence 
AB sufficiently often. Given such an -_//g, qualitatively new phenomena occur when a 
long list, such as the alphabet ABC ... XYZ,  is presented. These include anchoring 
(learning associations nearest to the "anchor stimulus" A earliest), bowing (middle of 
the list harder to learn than either end), and chunking (simple list items aggregate 
into composite i tems)? ) Thus, suitable analysis of "two-body" predictions (AB) 
automatically yields phenomena familiar in "many-body" predictions (ABC..  XYZ).  

The microscopic mechanism that produces these macroscopic many-body 
effects is still speculative, although it has been mathematically proven capable of 
discriminating, learning, and performing complicated tasks and yields effects 
analogous to related experimental data. ~2-1~ Its interpretation describes control of 
presynaptic transmitter production in terms of the cross-correlation of presynaptic 
spiking frequency and postsynaptic potential, la) Alternative chemical interpretations 
are possible, but they are strongly constrained by the functional form of the learning 
equations. 

We will investigate the dependence of serial learning phenomena on the spiking 
threshold /I  of J / .  Analogous statements can be made concerning serial learning 
dependence on the level of persistent physiological excitation ("arousal") and on the 
strength of lateral inhibitory mechanisms. (1) The case /~ = 0 has previously been 
studied. ~5~ Here, we choose/"  ~> 0. In the case/"  = 0, a phenomenon unlike normal 
learning occurs; namely, asymptotic recency dominates primacy. That is, after a 
Sufficiently long time, associations near the end of the list are stronger than associa- 
tions near the list's beginning. The reverse situation commonly occurs in the data of 
normal subjects, la~ This abnormal phenomenon is due to the buildup of response 
interference, especially in response to items at the list's beginning, as a result of the 
persistent presentation of events in the serial paradigm. When/"  = 0, each list position 
can form associations with all other list positions, albeit perhaps of different strengths. 
Thus, as ever more serial events are presented, correct associations near the list's 
beginning are eventually competitively inhibited by remote incorrect associations. 
Raising the threshold prevents remote forward associations from forming at the 
list's beginning. At the list's end, however, remote backward associations can form 
given any /" for which some learning is possible. A previous note a) suggests that 
lowering signal thresholds can hereby cause difficulties in paying attention and can 
yield punning behavior, because none but the most recent events can then overcome 
the buildup of interfering responses and influence future behavior. 

In this paper, we show that as/'increases, asymptotic primacy eventually dominates 
recency, as the data of normal subjects suggests. ~) We also discuss the dependence 
of bowing (in particular, the degree of skewness of the bowed curve) and associational 
span(duration in which associations can form with a given event) on spiking thresholds. 
The phenomenon of bowing is of particular interest from the statistical mechanical 
point of view, since it describes a kind of dynamical time-reversal on the time scale 
of the macroscopic experimentalist due to interactions which are nonlocal on the 
space of macroscopically observable data. (5) The "wobble" between asymptotic 
primacy and recency, on the other hand, describes macroscopic asymmetries in the 
structure of forward and backward associations. 
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The paper ends with some parametric computer studies, which in fact first 
pointed out that asymptotic recency dominates primacy if f '  = 0. 

2. T H E  L E A R N I N G  N E T W O R K  

A brief description of/ /{ will now be given for completeness. Let 6g = {rl, r2,... , rn} 
denote the collection of n events, or list items, that are represented in ~ ' .  To each r, is 
assigned a state (or vertex, or cell body cluster) v~ in ~g(. A directed edge (or inter- 
action pathway, or axon cluster) ei~ leads from each vi to every distinct vj , j  :/= i. The 
arrowhead (or synaptic knob cluster) of % ,  which touches vj, is denoted by N,j .  

Processes occur in all v~ and Nij.  The vertex function (or stimulus trace, or 
average membrane potential) x~(t) fluctuates in v~, and the interaction function (or 
associational strength, or memory trace, or excitatory transmitter level) zij(t)  fluctuates 
in Nu �9 For present purposes, it suffices to define these functions by the system 

= + [x (t - - e l +  z. . ,(t)  + i , ( t )  ( 1 )  
m4-r 

and 
k~k(t) = --~z~k(t) q- 3[xj(t - -  ,r) - -  FI + x~(t), j @ k (2) 

where [~]+ = max(G, 0) for any real number ~:, and i, j ,  k = 1, 2 ..... n. The system 
(1)-(2) is an example of an embedding field. <6) 

The list L~ ~ = rlr 2 ... rL will be presented once to ~ in a serial manner with ~- time 
units (the intratrial interval) between presentation of each r~ and r~+z, i = 1, 2 ..... 
L --  1. Effects of different intratrial intervals and of successive list presentations have 
been previously discussed.~2,5) 

Our results discuss the functions 

= [ X - I  (3) 
,m#j 

defined for k =/: j and all j = 1, 2 ..... n. The function yj~(t) measures the strength of  
the association r; -~ r~ relative to the strength of all competing associations r; -~ r~ ,  
m =/= k =;~ j, through time. Thus, yj~(t) measures the distinguishability of the associa- 
tion r~ -*  r~ during recall trials. Strong competing associations r; -*  r~ can annihilate 
behavioral effects of rj --+ rk via laterial inhibition if y,-~(t) is too small.In some previous 
papers, the functions yjT~(t) are built into the dynamics of j{,~2,5) but this creates 
unnecessary disadvantages3 s) 

Direct computation of (3) in the nonlinear system (1)-(2) is not presently possible. 
Such a computation can be carried out in a more linear version of system (1)-(2) that 
studies the primary effect of serial inputs on the functions yj~(t) while ignoring higher- 
order interaction effects. This system is called the bare f ie ld  of rid, 15) and is defined by 
(2), (3), and 

~ ( t )  = --o~x~(t) q- I~(t) (4) 

where the serial nature of the inputs implies 

I ,(t)  = ~I,+z(t -q- -r), i = 1, 2,..., L -- 1 (5) 
{0, i =  L + l , L  + 2 , . . . , n  
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To simplify notation,  we write I ~ ( t ) ~  J(t). Natural  auxiliary conditions will be 
assumed for  convenience, as done previously, (5) and can be removed with obvious 
modifications 

(a) J r  is initially at rest and in a state of  maximal ignorance; i.e., all xi(t) = 0  
for  t E I - - r ,  0], and all zjk(0) = E > 0 , j  @ k; 

(b) J(t) is positive only in an interval (0, A), with Z < r,  and is zero elsewhere; 

(c) J(t) is continuous and has a single maximum; 

(d) l~ e-~(a-+>J(v) dv > 1"; 

(e) y = 0: the decay rate of  associations is small compared to the time scale 
of  the transients to be studied. 

3. C O M P U T A T I O N  OF 

It will be convenient to 

RELATIVE A S S O C I A T I O N A L  STRENGTHS 

use the following notat ion in computing yjk(t): 

a 

A = f e~J(v) dv (6) 
o 

t v + p  

B(t, p) = f e -2"'~+~) ( e~J(w)  dw dv (7) 
0 ~ 0  

t, v + p  

C(t, p) = f e -+(+++, f e++VJ(w) dw dv (8) 
0 v O  

+ [f§ ]+ 
D(t, p) = f e -~(~+~) e~WJ(w) dw dv (9) 

0 0 

ECx) = e -~+x (10) 

E(x, y) = (1/a)Ce -++ --  e -~ )  (11) 

T~ = inf{t : Xl(t ) > 1"} (12) 

2/'2 = sup{t : x2(t) > Fi (13) 

Fj~(t) = min{t - - j r  -- T1, T2 -- T1} (14) 

Gjk(t) = min{t - -  (k - -  1)r, ( j  --  k + 1)r + T2} (15) 

fj+(t) = f+o [x,(v -- r) -- r ] +  x,~(v) dv (16) 

J--1 

g, Ct) = 2 fj+(t) (17) 
lc=1 

J 

hs(t) = 2 fj~(t) (18) 
1c=j+2 

ej = m i n ( L , j  + ET2/r+ + 1, Et/r]l -? 1) (19) 

and 

with 
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where ~ denotes the greatest integer less than or equal to ~. Henceforth the j on ~ 
will be omitted without any danger of confusion. In terms of this notation, the follow- 
ing formula for yjk( t )  can be stated. 

Theorem 1. Under conditions (a)-(e), 

y : k ( t )  = [1/ (n  - 1)] + of, .k(t)  
1 + p(f,-.j+l(t) + g;(t) + h~(t)) (20) 

where p = 3132~jzj~(0)] -1. The equations for f~(t)  are 

f ~ ( t )  = A E ( j  - -  k q- 1)[B(t - - j r  -- T1, Ta) -+- f f E ( t  - - j r ,  T1) ] (21) 

if t - - j r  ~ < h a n d j > k ,  

f j~ ( t )  = A E ( j  - -  k 4- 1)[B(A -- T1, Ta) + -PE(t - - j r ,  T~) + �89 2(t -- jr))]  

(22) 
ifA <~ t - -  j r  <~ T2 and j > k ,  

f j k ( t )  = A E ( j  - -  k -~ 1)[B(A -- Tz, TI) -}- F E ( T 2 ,  TI) ~- �89 2T2)] (23) 

if t - - j r )  T ~ a n d j > k ,  

f jk(t)  = 0 (24) 

i f  j r  -~ T2 <~ (k  - -  1) r and.] ~- 1 < k, 

f j~( t )  = A E ( k  - -  j - -  1) B( t  - -  (k  - -  1) r, 0) -- ]-'C(t - -  ( k  - -  1) r, 0) (25) 

i f 0  ~ t - - ( k - -  1) r ~ j r  + T2 - -  ( k  - -  1) r ~ < A a n d j + t  < k or  i f  t - -  ( k  - -  1)r~< 
A <~jr  + T 2 -  ( k -  1) r and j +  1 < k ,  

f j ~ ( t )  = A E ( k  - -  j - -  1) B( j -~  + T~ - -  (*c - -  1) -~, O) - -  F C ( j ~  + T~ - -  ( k  - -  1) -~, O) 

(26) 

if O ~ j r  -k T2 - -  ( k  - - 1 )  r ~ t - - ( k - - 1 ) r < ~ A  and j + l < k ,  or if 0~< 
j r - k  T ~ -  ( k -  1) r ~< Z ~< t - - ( k -  1) r a n d j - k  t < k ,  

f j k ( t )  = A e ( k  - - j  - -  1){B(A, 0) q- �89 2[t -- (k -- 1) r])} 

4- F { A E ( t  - -  [k - -  11 r, t) -- CO, 0)} (27) 

ifA ~< t -- (k -- 1) r < ~ j r q -  T2 - -  (k  - -  1) r a n d j  + 1 < k ,  

f~k(t) = A E ( k  - - j  - -  1)[B(A, 0) + (A/2~) e -2~a] 

§ F[(F/2a) E(j  -- k q- t) -- C(a, 0) -- ( a / a )  e -~a] (28) 

ifA < ~ j r q - T 2 - - ( k - - 1 )  r ~ t - - ( k - - 1 )  r a n d j +  1 < k ,  

f~.k(t) = D( t  - - j r  - -  7"1,2"1) - -  F C ( t  - - j r  - -  TI , Tz) (29) 

if t - - j r  ~ ) t a n d j = k - -  1, 
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J)~(t) = D(A -- 7"1, T~) ~ �89 2[t - - j r ] )  4- F[AE(t - - j r ,  1) -- C(A -- 7"1, T0] 

(30) 
ifA < ~ t - - j r  ~< T 2 a n d j =  k - -  1, 

fjk(t) = D(A --  T~, T 0 4- �89 2T2) 4- I '[AE(T2, A) - -  C(1 - -  T1,7"1)1 (31) 

if t - -  j r  >/ T2 a n d j  = k - -  1. The equations for  g~(t) are 

gj(t) ~ AE-~(--r,  O) E(r, jr)[B(t - - j r  -- T~, r l )  4- r E ( t  - - j%  T~)] (32) 

if  t - - j r  <~ A, 

g~(t) = AE-~(--r,  O)E(r, jr){B(A -- T~, 7"1) 4- 1AE(2A, 2[t - - j r ] )  

4- FE(t - - j r ,  7"1)} (33) 

if  l <~ t - - j r  <~ T~, 

gj(t) = AE-a(--r ,  O) E(r, jr)[B(a -- T, , T1) 4- �89 2T~) 4- FE(T~ , T~)I (34) 

if t -- j r  >~ T2 . The equations for  hi(t) are 

hi(t) = 0 (35) 

i f ~  < j 4 -  2, 

h~(t) = AE-I(0 ,  r) E(r, [~r - - j  -- 1] r)[B(Z, 0) 4- (A/2e`) e -2~a] 

+ (A/e`) E-~( - -z ,  0) E ( - - [ a  - -  11 r, - - [ j  + 11 .)[Fe -~t -- �89 e -2~'1 

- -  F [C( t ,  0) 4- (A/c 0 e-~al(e - - j  - -  2) 

4- AE(g - - j  -- 1) B(t - -  [e - -  11 r,  0) - -  FC(t - -  [e - -  11 r,  0) (36) 

if O < ~ t - - ( c r - - 1 )  r ~ j r 4 - T ~ - - ( c r - - 1 ) r < ~ l  or if t - - ( c r - - 1 )  r ~ < ) , ~ <  
j r  4- T 2 - - ( ~ - -  1) r,  

hi(t) = AE-I(O, . )  E(r, [~ - - j ]  r)[B(a, 0) + (A/2e`) e -~a] 

+ (A/e,) E-~(--r, O) E(--crr, - -[ j  + 11 r)[Fe -~t -- �89 e -2~t] 

- -  I'[C(t, O) q- (Ale`) e-=a](cr - -  j - -  1) (37) 

i f 1  ~ < t - - ( c r - - 1 )  r ~ j r  4- T 2 - - ( c r - - 1 )  r, 

hi(t) = AE-~(O, r)E(r ,  [,, - - j -  1] ~')[B(t, 0) + (A/2~)e-2~al 

+ (V~/2~) E-~(--% 0) E(--  [~ - - j  -- 11 ~, - - - )  -- V[C(t, 0) 

+ (A/e`) e-~q(z -- j -- 2) 

+ AE(e  - - j - -  1) B(j7 4- T2 - -  [or - -  1] r,  0) - -  PC(jr  4- T2 - -  [~ - -  1] r,  0) 

(38) 

if O < ~ j r + T 2 - - ( ~ - - l )  r < ~ l < ~ t - - ( c r - - 1 ) r  or 0 ~ < j r + T 2 - - ( ~ - - l )  r ~ 
t - ( ~ -  1)~- ~ t ,  
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ha(t ) = AE(O, r) E(r, [a - - j ]  r)[B(A, 0) + (A/2a) e -2~a] 

+ (1"~/2~) E - l ( - r ,  o) E ( - [ ~  - j ]  r, - r )  

--  1"[C(a, O) + (A/c 0 e-~a](cr - - j  -- 1) 

ifA ~ j r 4 -  7 " 2 - - ( ~ - -  t) r ~ < t - - ( ~ - -  1) r. 

(39) 

P r o o f .  Integration of (2) under conditions (a) and (e) followed by substitution 
of  (2) into (3) yields the equations 

yr = [ 1 / ( n  - -  1)1 4 -  pfi.k(t) 
1 4- p ~.~#jf~m(t) ' J ~= k (40) 

It therefore suffices to evaluate all functions f,.~(t), j ~ k. By the serial nature of the 
inputs, Ii(t) = II(t --  [i --  1] r) for all i = 1,..., L. Thus, by (4) and condition (a), 

x~(t) = x l ( t -  [ i -  1] r), i =  1,..., L (41) 

where 

(0 ,  if t < 0 

xl(t) = I fo e-~(t-~' J(v) dr, if 0 ~<t ~< A 

[Ae -~', if A ~< t 

In particular, by (16) and (1), we find 

fJk(t) = f~:o IX1(/) - - J r ) -  tP] + XI(V-  [ k -  117)dv 

(42) 

(43) 

Evaluation of (43) must be done in several cases, since the limits of integration over 
which the integrand is positive depend on the relative sizes of j, k, and t, and of x~ 
relative to 1". The following computations illustrate this fact. 

Let j > k. Since xdv  --  jr)  <~ 1" if v ~< j r  + T1, (43) shows that f i f f t )  = 0 if 
t ~< j r  4- T1, and thus that 

t 
L.~(t) = f [xl(v - j r )  - 1"]+ x d v -  [k -- ] ] r )dv 

Jr§ 1 
(44) 

for t >~ j r  + T1. The expression [xl(v - - j r )  -- F] + is positive only in the interval 
( j r  4- T1 , j r  q- T2), by (12), (13), (42), and conditions (b) and (c). A change of 
variables in (44) therefore shows that 

f,.~(t) (F,~(~) = [XI(/) @ T1) -- 1"] xl(v  @ T 1 @ [j -- k 4- 1]r) dv (45) 
~0 

where Fjk(t) is defined as in (14). Note that no superscript "4-"  occurs in (45). 
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Condition (b) along with the hypothesis j > k implies that 

v +  Tl  + ( j - - k - t -  1)~->A 

for all v >~ 0. Therefore, (42) and (45) imply 

,vj~,~) [e_~(~+rl) f ]+rl e ~ J ( w )  dw - -  1" 1 dv (46) f~.~(t) = A E ( j  - -  k q- 1) J0 e-~(~+r~) 

Suppose that t - - j r  ~< •. It remains only to apply (42) to (46) given special 
choices of t. By condition (d), we also have ;~ ~< T~, and so Fjk(t)  = t - - j r  - -  T1 .  
Equation (21) follows readily. Suppose that ,~ ~ t - - j r  <~ 7'2. Again 
Fj~(t) = t - -  jT  - -  T I ,  but the last two cases of (42) both arise if 7"2 > )t. Breaking up 
the integral from 0 to F~k(t) at t = )t -- T~ isolates these two cases. Then term-by- 
term evaluation fields (22). Finally, suppose T2 < t - - j r .  Now, Fjk(t)  = 7'2 - -  Tx 
and substitution of T2 for t - -  j r  in (22) yields (23). 

The sum gj( t )  in (17) can also readily be evaluated, since all fjTo(t) with 
k = 1, 2,.. . ,j  -- 1 simultaneously obey the same equations (21), then (22), then (23) 
as t increases. A . . . . .  k g l~+z -z simple apphcatlon of the adentlty ~i=0 x = (1 -- x )(1 -- x) for 
suitable x therefore completes the computation. 

Suppose tha t j  < k --  1. Again the functionsfj~(t) are computed in several cases. 
More cases occur, however, than when j > k, because now the list items r~ occur 
after rj does rather than before. This asymmetry in the treatment of forward vs. 
backward associations is clearly seen in (43). For j > k ,  x ~ ( t ) >  0 whenever 
x j ( t  - -  -r) > 1", so that if any past r~ influences yj~(t) ,  then all do. By contrast, the 
product [xj(t - -  ~-) - -  1"]+ xk( t )  can be identically zero for some k > j + 1 but not 
others. We now consider the cases that arise i f j  < k -- 1. 

The product [ x l ( t - - f l ) - - Y l + x z ( t - - [ k - - 1 1 ~ - )  is identically zero if 
j~- -}- T~ ~< (k -- 1) T. Thus, fj~(t) ~= 0 by (43), yielding (24). Again by (43) and the 
hypothesisj  < k -- 1,fj~(t) can only be positive if t > / (k  -- 1) T, and in this case (43) 
can be written as 

= [x~(v + (lc - j - 1)~ -/ '1+ xi (v)  dv 
"~0 

Since v -t- (k - - j  -- 1) ~- ~> t for all v >~ 0, condition (b) implies 

f j k ( t )  = f t - i k -~ l ,  [AE(k  - -  j - -  1) e . . . .  1"]+ xi(v)  dv (47) ~0 
Two pairs of cases now occur depending on whether [ A E ( k  - - j  - -  1) e - ~  - - / ' ] +  is 
positive or equal to zero, and whether x~(v) obeys the second or third case of (42); that 
is, if  v ~ ~ or v >/~. To guarantee that [ A E ( k  - - j  - -  1) e . . . .  1"]+ is positive, 
suppose that t ~< min{)~ + (k -- 1) ~-,j~- + T2}. Then the superscript " + "  in (47) 
can be removed, and (47) becomes 

~t--(/C--1), fq,' f j k ( t )  = [AE(k  - -  j - -  1) e -'~ -- 1"] e -'~ e~~ dw dv 
~ 0  0 
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which can be evaluated term-by-term to yield (25). If, however, either 

j~- + T2 < t <<. A 4- (k - - 1 )  r, or j-c 4- T2 <-.. A 4- (k - - 1 )  ~" < t, 

then [AE(k - -  j - -  i) e . . . .  P]+ is positive only when v ~< )t. Hence, fiT~(t) satisfies 
(25) with t = j~- 4- 7"2, yielding (26). 

Now we consider the cases in which [AE(k --  j - -  1) e . . . .  F]  + is positive even if 
v > ) .  Suppose ( k - -  1 ) ~ - §  < t  ~ < j r +  T~. Then the integral from 0 to 
t -- (k --  1) r in (47) is broken up at v = )t to distinguish the second and third cases 
of (42) in evaluating x~(v). Term-by-term integration now yields (27). Supposing that 

+ (k -- 1) ~- <j~- + T2 ~< t now yields (28) by letting t = j r  + T~ in (27). This 
completes the case j < k -- 1. The remaining case j = k -- 1 can be carried out in a 
similar way. 

It remains only to compute the sum/~j(t) L = ~,~=j+2fi'm(t) in the denominator of 
(40). This sum equals hi(t) as given by (18), because [xz(t - - j r )  - -  F] + = 0 for all 
t > j  § "r-~T~. As with evaluating f,.l~(t) for j < k -- 1, more cases can occur than 
when evaluating gj(t). 

Equation (35) results ifj~- + T~ ~< (k -- 1) ~- because (18) and (24) show h~(t) = O. 
However, if t ~< min{A + ( a -  1)-r,j-c 4-T~}, hi(t) is found by summing fi.k(t), 
given by (27), for k = j + 2 , j  4- 3 ..... ~ -- 1, andfi-~(t), given by (25). The resulting 
sum is (36). For )t 4- (a -- 1) "r ~ t ~ j ' r  4- T2 ,fi'k(t) is given by (27). Equation (37) 
results from summing thesefjk(t) for k = j 4- 2 , j  4- 3,..., or. When 

j r  + T2 ~< min()t + (or -- 1) ~', t} 

J~(t)  is given by (28) for k = j q- 2, j + 3,..., cr -- 1, andfi., is given by (26). The resulting 
value of hi(t) is Eq. (38). Finally, in the case of ~ -t- (e -- 1) r ~ j r  + T2 ~ t, hi(t) 
is computed using (28) instead of (27) forfi-~(t), yielding (39). This completes the proof  
of Theorem 1. 

4. A S S O C I A T I O N A L  S P A N  

The associational span is defined heuristically as the maximum duration during 
which associations can be formed between a given ri and other events rk �9 Alternatively, 
it can be defined as the number of rk with which r~ can form an association. Using 
this concept, we will make precise the important fact that vi can sample all vk with 
k ~< i -- 1, but not necessarily any vk with k >~ i ~- 1 other than v~+~. That is to say, 
when associations are being formed with r~, different information is available in the 
network concerning the past than the future. 

We will use the following definitions of associational span, and of the related con- 
cept of associational interval, for simplicity. 

Def in i t ion .  The interval (T1 + i-r, T2 + i~-) is the associational interval of 
r i ,  and ~Y = T2 -- T1 is the associational span of all r i .  
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These definitions are justified as follows. By (12), (13), and (42), [xl(t) --/-']+ is 
positive only for t e (T1, T2). Since 

t 

z i j ( t )  = ~ + v f [x~(v - i . )  - / ~ ] +  x~(v  - [ j  - 1].) dv 
0 

zij(t) can only change for t ~ (T~ + it, T2 q- it); namely, in the associational interval 
of r~, whose length g[ is the associational span. 

If  J(t) is a rectangular input pulse of intensity J and duration 2t, then 

G' = 2, -k, (1/o0 log{[(J/c~F) -- 11(1 -- e-~a)} (48) 

which is monotone decreasing in r'. As /" decreases, more forward associations 
r~ -+ rk, k > i -t- 1, can form, thereby reducing the relative strength of r, -+ r~+z. 
This does not mean, however, that increasing F always improves learning of ri --+ r~+,. 
I f  Jr'is too large, then even though no forward associations can compete with r~ -~ ri+z, 
nonetheless [xt(t) -- F] + is usually zero or small in value, so that little learning of 
r~ --~ ri+, occurs. Thus, there exists an optimal region of threshold choice that reduces 
response interference without unduly diminishing the rate of learning. Alternatively 
expressed, this optimal region maximizes distinguishability of the correct association 
while providing enough energy to drive the learning process. An analogous region of 
optimal performance has been suggested by recent experiments3 m 

Notice that decreasing J in (48) has the same qualitative effect as increasing/' .  
Thus, all of our statements concerning threshold regulation given fixed levels of 
physiological excitation can be transformed into corresponding statements concerning 
variations in the level of excitation as it compares with the system's fixed threshold 
parameters. The interplay between J and inhibitory interaction strength is, by contrast, 
more subtle/9~ 

5. B O W I N G  

As mentioned in the introduction, bowing means that the middle of the list is 
harder to learn than either end. This is the net result of two effects. First, as list position 
i increases, there always exist more backward associations ri--~ r~, k < i, that 
compete with r i -+ ri+l, thereby increasing learning difficulty. Second, there exist 
fewer forward associations r~ --+ ri+,, thereby decreasing learning difficulty. However, 
by varying the associational span, we can guarantee that no forward association ever 
competes with r~ --+ r~+l for any i. For example, as in Section 4, choose/" so large that 
[xi(t) - - / ' ]+  = 0 whenever xk(t) > 0 and k > i + 1. Then, the associations ri ~ r~ 
never form, and consequently the major effect on the association r~ --~ ri+, as iincreases 
is simply to increase response interference due to increasing numbers of backward 
response alternatives. Apart from such degenerate cases, however, bowing always 
occurs in the bare field, as we will shortly prove. 

We will first consider "asymptotic" bowing. Namely, letting 

r )  - Jim y , . , + , ( t ) ,  = 1, 2 , . . . ,  L - -  1, 
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we will prove that for any f ixed/~/> 0, M(i, F)  either first decreases and then increases 
as i increases from 1 to L, or the degenerate case occurs in which M(i , / ' )  is monotone 
decreasing. By definition, for fixed F, the bow occurs at the list position M(_P) for 
which N( i , / ' )  is a minimum. If there exists more than one such position, we let M(/ ' )  
be the largest one, since in the presence of nonlinear interactions, background noise 
can only increase as more events are presented. 

In the bare field, M(/ ' )  is a monotone-increasing function o f / ' .  Furthermore, 
M(0) = �89 -- 1) if L is odd and M(0) = I(L -- 2) or �89 if L is even. 15) In the 
degenerate case above, M(F)  = L for sufficiently large/ ' .  Thus, maximal difficulty in 
learning can occur at any list position greater than the list's numerical middle. Since 
"normal"  learning requires a posi t ive/ ' ,  the bow will occur nearer to the end than 
to the beginning of the list, and the bowed curve will therefore be skewed. This also 
occurs in vivo. (5) 

At times t < ~ ,  let ~(i ,  F, t ) =  yi,i+~(t), and suppose that mini ~ ( i , / ' ,  t) 
occurs at list position M(t, 1 ~) for every fixed t and / ' .  Then, for fixed F, M(t, 1") 
ultimately decreases from M(t, F) = L to M(t, F)  = M(/ ' )  as t increases beyond the 
time at which rL is presented to infinity. This happens because the nonoccurrence of 
the events rz+~, rL+z ,..., rn gradually decreases the relative amount of response inter- 
ference to rL_~ -~ rL growth, since the future associations rL_z --- re ,  k > L, never 
form as t increases. Thus, skewing can depend both on /" and on the intertrial 
interval. (5) Of course, i f / "  is very large, the intertrial interval effect will be negligible. 

If  we consider only the influence of past associations, then the distribution of 
associational strengths is much simpler to understand. For  example, the function 
Yi,i+l(t + [i -- 1] z), 0 ~ t ~< 27, is a negatively accelerated, monotone-decreasing 
function of i. This function measures the increase with list position of  competing 
remote past associations after each correct association has had an equal time to 
develop. 

The following notation will be convenient for our study of  bowing. Let 

and 

~g ---- ~-E-~(--% 0)[AB(A -- Tx, 7"i) q- AFE(T2, 7"i) 

+ -~-A2E(2h, 2T~) --  (_P~/2~) E(--~)] 

= A'rE(cr) E-~(O, r)[B(A, 0) + (A/2~) e -2~a] 

g = r[c( ; t ,  o) + (AI~<) e -~] 

(49) 

(5O) 

(50 

T h e o r e m  2 (Asymptotic Bowing). Under conditions (a)-(e), either asymptotic 
bowing or the degenerate case occurs, with 

M(F) = 1 . log r~l ~ § (g2 § 4ff~)112] (52) 
o~,T L -2"-~ 'J 

and M(/ ' )  monotone increasing in F. 

Corollary I (No Future Field). I f  T,2 < 2z, the degenerate case occurs. 
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Proof of Asymptotic Bowing. We wil l  study sign(e~(j ,  F)/ej) as a function 
o f j  = 1, 2,..., L -- 1, where 

1 if w > 0  
sign(w) = 0 if w = 0 

--1 if w < 0  

and where we let j vary continuously to compute the derivative. Note in (20), for 
t > T2 + (L -- 1) r, that all f~-1~(t) are constant, and moreover all fj.j+l(t) are equal, 
j = 1, 2 ..... L -- 1, say to the constant N. Thus, by (20), 

s i gn [~ ( j ,  F)/ej] = --sign[eN(j, 1-')/~jl (53) 

where N(j, F )  is the denominator of (20) for t > T2 + (L -- 1) r; namely, 

N(j, F )  = 1 + p[N + g,(oo) + h;(ov)] (54) 

Thus, setting p = 1 for convenience, 

egg(j, l~)/aj = a(ga(oo) + hj(oo))/aj 

and direct computation using (34) and (39) shows that 

aN(j ,  I ' ) /e j  = (gE(j)  - -  ~ E ( - - j )  + E (55) 

Setting aN(j ,  P) /e j  = 0 yields the quadratic equation 

~ z  ~ -- # z - -  ~f = 0 

in z = E(--j) ,  which has at most two real roots. Thus, there exist at most two values 
of s A and .A(N ~< J,), at which a bow can occur. Four possible bowing cases can 
therefore be distinguished: 

(I) e~N(j l ,  1-')/ej 2 >~ 0 and e2N(j2, p)/~j2 > 0; 

(II) e~gg(jt , .U)/~j ~ <~ 0 and e2N(j2 , P)/ej  2 > 0; 

(III) ~2N(jt, 1-')/~j 2 > 0 and e~N(j~, l ' ) /ej  ~ <~ O; 

and 

(IV) e2N(k,  F)/ej  2 <~ 0 and e2N(k,  P)/ej  ~ <~ O. 

Cases I and II are readily eliminated using (55): since N > 0, aN(j, P)/ej is 
negative for all sufficiently large j. Consider case III. Since 

O2gg(k, I~)/ej ~ = --�89 2 + 4g'.@ --  d~ ~ + 4(g.@) 1/2] 

and e2N(A, l~)/ej 2 > 0, it follows that (g < 0. If  eg < 0, then by (55), 

lim sign eN(j ,  P)/aj  = --1 (56) 
~--+--eo 
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Also, by (55), 

lim sign O(~(j, F)/Oj ---- --1 (57) 
j~oo 

From (56) and (57) along with the defining conditions of case III, it follows that 
ON(j, I~)/Oj has a single and double root, which is impossible by (55). 

Only case IV remains. To prove bowing, it will suffice to show thatjz < 1 <J2 �9 
In the degenerate case, the inequalitites jz < 1 ~< J2 will hold. To prove j l  < 1, it will 
be convenient to consider the graph of 0~(j, F)/Ojin Fig. 1. Suppose ET~/'c~ <~ L -- 1. 
Then, (38) and (39) show that h~(oo) is constant a t j  = 1, and (34) shows that gj(oo) 
is monotone increasing in j. Hence, N(j,/~), as given by (54), is monotone increasing 
a t j  = 1. Thus, j1 < 1 by Fig. 1. Suppose [T2/r~ >~ L. We will show that 

< 2~e ~" (58) 

By (55), we also know that 

e~,h = (d~/2N) -- (1/2~)(~ 2 + 4~'N) m 

which proves Jl < 1. 
The inequality (58) will now be established. By (13), (50), and (51), this inequality 

is equivalent to 

~(h, 0) + (A/s) e -~a < 2~-E[L -- 1 -- (T2/~-)] E-l(0, ~-)[B(A, 0) + (A/2~) e -2~a] 

Since T~ ~> L~-, z > A, and ~-E-I(0, ~-) > 1, it suffices to show that 

C(;L 0) < 2E(-- 1) B(h, 0) 

which is obvious. Thus, in all cases, j~ < 1. 
It remains to show that J2 ~> 1, and that J2 > 1 for sufficiently long lists. Our 

argument will depend on the study of the roots of 0N(L I~)/Oj = 0 as a function of/-'. 
Hence, we write j2 as M(I'), defined by (52), to emphasize this dependence. 

a,,~ I j , r )  
oj 

Fig. 1 
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A previous paper (a) shows that the only root of ~f~(fi O)lej = 0 i s j  = �89 -- 1). 
Since we consider only the nontrivial case L >~ 3, M(0) ~> 1. If  L ~> 5, M(0) > 1. We 
will now prove that (i) dM/dF >~ O, and moreover that (ii) dM(O)/dF > 0. Thus, 
M(F) >~ 1 for all _P ~> 0 and L >~ 3, and M(_P) > 1 for a l l / "  >i 0 and L /> 5. To 
prove (i), we will directly verify (ii) and show in addition that (iii) d~M/dF 2 >~ 0 
whenever dM/dF = O. 

We prove (ii) as follows. By (52), 

where 

and 

dM 1 (dC/dF) + (dCd/dF)E(j) 
= ~r (d ~2 + 4cg~)112 

d~/dF ----- rE-~(--r, O)[AE(T2 , T1) -- (_N/a)E(--~)] 

d e l a y  = O) + (A/a) 

Thus, it suffices to show that F = 0 implies d#/dF + (dC~/dF)E(j) > O, which is the 
same as 

o)/Al + - rE[j -{- E-I(--T, 0) > 0. 

This is surely true, however, since even 

e -~a > e -~  > rE(j) E-l(--r, 0). 

The proof  of (iii) uses (i) and two additional facts: (iv) sign(d2M/dF 2) is constant 
at all points where dM/dF = 0, and (v) for sufficiently large 1', aft(j, l")/aj > 0, and 
thus M(F) = L. 

By (i) and (iv), if d2M/dF 2 >~ 0 at any point where dM/dF = 0, then we are done. 
By (iv), if d2M(Fo)/dF 2 < 0, then d2M(l')/dF ~ < 0 for all T' >~ F 0 . In particular, (v) 
cannot occur, thereby yielding a contradiction. 

We prove (iv) by noting that if dM/dF = 0, then 

d2M 1 (d2C~/dI'2)E(j) 
dF 2 ~r (#3 + 4~)Zl~  

where 

d2C~ rE - l ( - - r ,  0) 1 + aAe -~'~1 ~P 
dF  z a 

We prove (v) as follows. By (13), 

T2(/") = (l/a)log l[fle~'J(v)dv]/-P f 

Hence, T~(F) is monotone decreasing in F and l i m r ~  T~(F) = 0. Thus, there exists 
a Fo such that T2(Fo) = 2r, and in particular T2(F) ~< 2r for _P ~ fro. By (35), 
however, T z ~ 2r implies h j ( c~ )=  0. By (31), fi 'd+l(~) is independent of 
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j = 1, 2,.., L -  l. To prove that ~fY( j ,  zT')/~j > 0, it thus suffices to 
Og;(oo)/Sj  > O. This follows readily from (34), and completes the proof. 

Proposition 1. The function 

y ( i ,  t )  = y~,~+l(t 4-  [i - -  1] ~-) 

for fixed t ~ [0, 2z], is positively accelerated and monotone decreasing in i. 

Proof. By (35), h i ( t )  ~ O. Thus, by (20), 

y( i ,  t )  -~ [1/(n -- 1)] -t-J~,~+~(t -k [i -- 1]~-) 
1 -F f~,i+z(t -? [i -- 1]~-) -k gi ( t  - k  [i - -  1]r) 

Henceforth, we 
plicity. 

By (30) , f is  independent of i. By (33), 

g : 3E(z, i t )  

where 

3 = A E - I ( - - r ,  0)[B(~ -- 7"1, T1) -k �89 2[t -- r]) q- _PE(t - -  r ,  T1)] 

Thus, by (59) and (60), letting i vary continuously, we find that 

d y  _ 8r{[1 / (n  - -  1)] + f } E ( i )  < 0 
di  (1 - ? f - k  g)~ 

109 

show that 

and 

(59) 

write f = f~,i+l(t -k [i --  1] z) and g = gi ( t  + [i - -  1] z) for sim- 

d~y _ 2 ~ % e E ( 2 i ) { [ 1 / ( n -  1)] + f }  -k ~ r Z E ( i ) { [ 1 / ( n  - -  1)] _L f} > 0 
di s (l q - f +  g)a (1 q - f +  g)2 

(60) 

6. INVERTED U IN PERFORMANCE, PAYING ATTENTION,  
A N D  PRIMACY VS. RECENCY 

This section discusses three interrelated themes. The "inverted U in performance" 
refers to empirical curves of the type shown in Fig. 2. Figure 2 points out a feature 

PERFORMANCE 
INDEX 

AROUSAL LEVEL 

Fig. 2 
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characteristic of many experimental situations in which a fixed performance index is 
plotted against a prescribed arousal parameter, and it is found that performance 
suffers due both to underarousal and overarousal, m-~a) We will study the closely 
related "inverted U in learning," for which both underarousal and overarousal 
diminish the rate of learning, and thereby influence the accuracy of performance. 
Underarousal will slow learning by providing too little energy to drive the learning 
process. Overarousal is characterized by an ample supply of energy, but too much 
response interference from incorrect response alternatives. See Section 4 for related 
comments. 

At least two mechanisms exist in our system for creating overarousal: first, a 
large amplification of all inputs to the list-representing states by a nonspecific arousal 
source; second, a pathological reduction in the thresholds of list-representing states. 
Experimental data az,~) has suggested that the former mechanism can operate in vivo, 
with the reticular formation as a possible nonspecific arousal source. The second 
mechanism could in principle by brought into play by pathological changes in ion 
binding in the list-representing cells, none of which is necessarily a nonspecific 
arousal source. 

The second theme concerns itself with one possible mechanism for increasing 
the difficulty of paying attention. Experimental evidence a2) has suggested that 
suitable forms of overarousal can interfere with paying attention. In the present case, 
overarousal allows the most recent events to competitively inhibit the trace of past 
events. Thus, only the most recent events can influence future behavior. If  such a 
mechanism operated in vivo, by the time a long sentence could be fully presented, the 
trace of the sentence's beginning would be inhibited by the presentation of the end. 
Thus, it would be very difficult to comprehend the meaning of the entire sentence. 
Indeed, a predominance of low-order associations to the last few words of the sentence 
would be available. This fact is compatible with the existence of punning behavior in 
suitable mentally ill patients who are presumed to be in a continual state of over- 
arousal, m,za) 

These facts suggest the third theme. Namely, we are led to study the influence of 
arousal level on the relative strength of the traces of past and recent events that are 
presented consecutively in time. In particular, in the serial learning situation, we vary 
the level of nonspecific arousal, or equivalently, the common threshold of all list- 
representing states, and study the relative strength of associations at the beginning 
and the end of the fist. In normal subjects, the associations at the list's beginning are 
stronger than the associations at the list's end (that is, primacy dominates recency). 
Our previous remarks suggest that as the threshold becomes too low, ultimately the 
end of the list will have stronger associations than it's beginning (that is, recency 
dominates primacy). This is indeed the case in the present model. Whether varying 
arousal in this way actually causes a reversal of the normal (primacy/recency) ratio in 
vivo is unknown to us and therefore stands as a conjecture. 

We therefore study the functions P~(t, F ) ~  y~(t @ [ j -  1] ~-, F)  and the 
functions 

Qj~(t, F) = yj,j+z(t + [j - 1] ~-, F)/yk,~+z(t -I- [k -- 1] -r,/~) (61) 
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j ,  k = 1, 2,..., L -  1, which compare the j th  associational strength with the kth 
associational strength at corresponding times after the associations are activated by 
inputs. We will be particularly interested in Q1.L-I(t,/") to study primacy-recency, 
and denote this function by Q(t, 1") for brevity. The following facts will be established. 

P r o p o s i t i o n  2 (Relative Initial Associational Growth). For all /" ~> 0 which 
are sufficiently small that some learning occurs, 0Qj,j+~(0,/")/~/" > 0 , j  = 1,2,. . ,  L - 1. 
That is, the initial growth rate of each correct association decreases as a function of 
list position. This is due to the increase in response interference due to prior items in 
the list as j increases. 

T h e o r e m  3 (Time-Evolution of  Associations). For a l l / "  ~> 0, OP~.,j+z(t,/")/~/" 
changes sign from positive to nonpositive at most once as t - +  oo,j  = 1, 2,..., L -- 1. 
In particular, for a l l / " / >  0, OPL_~.~(t ,/")/~t >~ 0. That is, response interference due 
to successively presented future items can build up at a given list position until 
initial associational growth becomes asymptotic decay. On the other hand, no future 
items occur on a given trial at the end of the list, and at this list position, associational 
strength cannot decrease as t--+ or. 

T h e o r e m  4 (Asymptotic Primaey-Recency vs. Under-Overarousal). 

Q(o~, O) < 1. aQ(oo, /")/a/" > 0 

as /" increases from 0 to a unique value /" = / " a  such that Q(co,/"1) = 1. As /" 
increases above I" 1 , eQ(oe,/")/~/" > 0 until a unique value P2 is reached. For  
/" >~ 1"5, OQ(o%/')/~/" ~< 0, but Q(o%/") >~ 1 for a l l /"  >~/"1. Clearly, Q(o%/") = 1 
for sufficiently large/", since no learning can occur i f / "  is too large. 

That is, if the threshold is too small, recency dominates primacy due to over- 
arousal. As threshold increases, primacy eventually dominates recency, but if the 
threshold is too large, the list-representing states cannot emit sampling signals at all, 
so that no learning occurs, and (degenerately) primacy equals recency. See Section 4 
for related comments. 

Propos i t ion  4 (Asymptotic Associational Strength As a Function of  Remoteness). 
At any fixed time after full presentation of the list, both forward and backward 
associational strengths at any given list position decrease as a negatively accelerated 
function of remoteness. 

that 
R e m a r k  (Maximal vs. Asymptotic Primacy vs. Recency). 

max P~(t, _P) > max PL-~ L(t, P )  ~ , 

despite that fact that 

P12(~,/') < PL_I,L(oO, r )  

It sometimes occurs 

822/3/2-2 
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That is, there is actually a reversal in primacy dominating recency as a result of the 
increase in response interference as t --~ oo. On the other hand, it can occur that 

and 

max P12(t, /") < max~ PL-a,L(t, [') 

e ~ ( o o ,  ~) < 2',_~,L(oo, [ ' )  

Computer studies show that, for fixed [', one can proced from the former to the latter 
case simply by increasing the local decay rate ~ at all list-representing states. 

It should therefore be clearly realized that primacy dominates recency for suffi- 
ciently large/1  because, for all ~ > 0, the initial growth rate of associations at the 
beginning dominates the growth rate at the end, and that increasing [" prevents 
sampling of too many remote associations. 

7. PROOFS OF T H R E S H O L D - D E P E N D E N T  FACTS 

Proposition2. Under conditions (a)-(e), aQj,j+l(o,[')/at > 0 for all 
j = l , 2  ..... L - - t .  

Proof. By condition (a), it suffices to show that 

aPj,~+t(O, [')/at > gP~+l,j+z(0 , [')~at. 

Note that by condition (a), P~,j+~(O, [ ' )  ~ P~-+z,j+2(O, [ '),  whereas by Proposition 1, 

Pj,5+~(t, F) > P~+~,j+2(t, 1") for sufficiently small t > O. 

Theorem 4, Under conditions (a)-(e), aPj,j+z(t, [')/at changes sign from 
positive to nonpositive at most once as t ~ o% j = 1, 2 ..... L -- 1. In particular, 

aPL--Z.L(t, [')~at >~ 0 for all t >~ 0. 

Proof. First we show that aP~,j+z(t, [')/at changes sign from positive to non- 
positive at most once. Clearly, aP~.,j+a(0, _F')/at > 0. It remains only to show that 
aPj,~+~(T, F)/at <~ 0 for any T >~ 0 implies aPj,j+z(t, [')/at <.% 0 for all t >~ T. First 
we compute aPj,j+l(t, [')/at. By (20), 

- + :%+1(t - ~-) 
PJ'~+I(t' Y) = I § fm~lll} n- -cr ga(t - -r) + h~(t -- r) 

where we let p = 1 without loss of generality. Henceforth, all subscripts j on the 
functions f ,  g, and h will be omitted for convenience. Clearly, 

(62) 
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Computa t ion  o f f  and ~ readily follows f rom (30) and (33), respectively. We find 

f = A e - ~ [ A e  - ~  - -  _P] ( >  0) (63) 

and 

= E-Z(-- 'r ,  O) E(r ,  j r )  f (64) 

Computa t ion  of  h requires consideration of  Eqs. (35)-(37). 
Consider (35). Then h = 0. We will prove that  this implies 

~Pj,~+z(t -k % [ ' ) /~t  > 0 if 7"1 - -  -r < t < T 2 - -  T 

(65) 
= 0 otherwise 

By (62)-(64), 

sign OPj,~+z(t -5 r, -P)/et = sign f 

f rom which our  claim is obvious. Note  in part icular  t h a t j  = L --  1 implies that  h = 0. 
Hence,  (65) holds wheneve r j  = L --  1. 

Consider (36). Then, h can be broken up into the sum 

where 

h ---- h m § h 121 (66) 

h ID ~ -  AE-~(O, ,c)E(~, [~ - - j -  1] ~-)[B(A, 0) + (A/2c~)e -2~a] 

+ ( A / s )  E-Z(--~ -, 0) E ( - - [ a  - - j  - -  1] ~-, --  ~')[I'e -~t - -  �89 

- -  F[C(;L 0) + ( A / s )  e-~al(~ - - j  --  2) 

and 

h (~ = A E ( a  - - j  - -  1) B(t  - -  [a - - j  - -  11 r,  0) - -  I 'C( t  - -  [or - - j  - -  11 ~', 0) 

Differentiating (66), we find 

h = h (1) -1- h {2) 

where, by (63), 

and 

hm = E-l(---r ,  0) E ( - - [~  - - j  - -  1] ~-, - - z ) f  

. h~ 2~ = A-Ze~fxz ( t  - -  [ ~ r - - j -  1]-r) 

Substituting (69) and (70) into (62) using the notat ion 

we find 

where 

S ~ - - - - - -  

= E - l ( - - . ,  0 ){E( . , j . )  + E(-- [~  - - j  -- 11 -, - - - ) )  

sign OPj.~+l(t + r,  -P)/~t = sign S 

(67) 

(68) 

(69) 

(70) 

(71) 

n - - 2  l 1 \ 

+ g + h - -  ,n--,|"::-"-~ q - f )  (tz + A-Xe~txz(t - -  [~ - j  - -  1]~')} (72) 1 n 
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The case of Eq. (36) will be completed by showing that S is monotone decreasing. 
Write S as the sum 

S = S m + S (2) 

where 

and 

S a  ) _ n - -  2 n - - 1  + g  + h(1) - - / ~  (n  ~ 1  1 @ f )  (73) 

S `2) = h ( ~ ) - A - ~ e  ~ t ( n  1--~1 + f )  x x ( t - -  [ o r - - j - -  1]r)  (74) 

It can be shown that S (1) is constant. It remains only to show that S (~) is monotone  
decreasing. 

Note that 

where 

sign N{2) = sign[h(=)f_ fl~(2)] 

f = - -aAe-~ t [2Ae  - ~ -  1"] 

(75) 

(76) 

and 

]i(2) = - -~Ae-~txz( t  - -  [or - - j  - -  1] r) + [Ae -~t - -  1"] 2z(t - -  [~r - - j  - -  1] r) (77) 

By (63), (70) and (75)- (77), the condition N(2) ~< 0 is equivalent to the trivial inequality 
21 >~ - - a x z .  

Consider Eq. (37). In this case, the proof proceeds just as in the previous case, but 
is simplified by the absence of the terms h (m and S (2). Theorem 3 is therefore proved. 

Theorem 4 will be stated in terms of three increasingly prescribed classes of inputs. 
Class j(1) satisfies conditions (b)-(d). Class Y(~) is the subclass of j a )  satisfying the 
inequality 

dI(T1)/dt ~ 0 (78) 

i.e., inputs that are already decreasing when vl begins to sample, j(a) is the subclass 
of J(~) consisting of rectangular inputs. 

T h e o r e m  4. (I) For any input in j(a), Q(oo, 0) < 1. (II) For any input in 
j(2), there exists a unique F 1 such that Q(oo,/'1) = 1. (III) For any input in j(a), 
eQ(oo,  F) /e1"  changes sign once from positive to nonpositive. 

Remark. Computer runs in Section 8 indicate that II and III both hold for 
larger classes of input. 

.... Proof .  Point I follows by iterating (60). Point II will be proved by showing 
that the function U ( F )  = h ( F )  - -  g ( F )  has one root under conditions (a)-(e), 
[U(F) = 0 iff Q(oo, 1") = 1.] The graph of U will be shown ~o have the form given 
in Fig. 3;-where l"a will be seen to be S0'large as to violate condition (d). 
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U(r 

Fig. 3 

Figure 3 will be established in five steps. First, it is clear that U(F) is a continuous 
function of/" .  Second, U(/') = 0 for all sufficiently large/-', since eachfj~(oe, P)  =- 0 
for all sufficiently large /". Third, U(F) < 0 for all /" in a sufficiently small left- 
neighborhood of /"3 .  This is because h(P) = 0 in such a neighborhood (degenerate 
bowing occurs), and thus U(T') = --g(F) < 0 in this neighborhood. Fourth, we will 
show that dU(O)/dF < 0, and fifth we will prove that d2U(/")/dF 2 is monotone de- 
creasing in F. 

To prove that dU(O)/dF < 0, note by (34), (38), and (39) that 

dg(/")/df' = AE-I(--'r, O) E(r, [L -- 1] ~r) E(T2 , T1) (79) 

and 

dh(/")/d/" = (N/c 0 E-I(--z,  0) E(--[a -- 21 ~-, --z) -- [C(A, 0) + (Ae-~/~)](a -- 3) 

- -  C (T2  -t- [a - -  2] r ,  O), if 0 ~< T 2 - - ( a - - 2 )  r ~ A  

= (F/o 0 E-Z(--~ -, 0) E(--[r -- 1] 7, --~-) -- [C(A, 0) -+- (Ae-~a/oO](a -- 2), 

if A ~ < T 2 - - ( a - - 2 )  r (80) 

Thus, dU(O)/d/" < 0 is equivalent to 

(A/c 0 E -1 (--~-, O) E(r, [L -- 1] ~-) < (or -- 2)[C(A, 0) + (Ae-~/oOl 

Since C(A, 0) and A/c~ are positive, and z > A, this inequality is implied by 
(L -- 2) > E-I(--~ -, 0) E(0, [L -- 2] ~-), which is obvious. 

To prove d~U(F)/dF ~ is monotone decreasing, we will directly compute that 

d3h(I')/dF ~ <~ d3g(l")/d/" 3 (81) 
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By (79) and (80), 

d3g(P)/dl "8 = --AE-I(--'r, O) EO', [L -- 11 T) e-~rl(#T~/#]") 3 dI(TO/dt (82) 

and 

d3h(!P)/df '8 = --(1/~2]" 2) I(T2 -- [a -- 2] ~), if 0 <~ T2 -- (a -- 2) T ~< A 

0, if ~ <  T~- - (c r - -2 )  T (83) 

Thus, the inequality (81) is implied by (78). 
The proof of III is given in eight steps. In this proof, we will introduce two 

comparison functions V(]") and W(]") to help us determine the properties of 
~Q(oo, ]")/~F and ~Q(oo, ]")1~]"2 for different values of ]". Steps 1-3 are remarks 
about V(1-') and W(F). Using these remarks, steps 4-6 prove that Q(oo, ]") has no 
critical points for 2" < ]"2. Finally, steps 7-8 prove that Q(ov, ]") has one critical 
point for ]" >~ ]"2. The steps are as follows: 

(1) sign ~Q(oo, ]")/ST' = sign[Q(oo, iT') -- V(]")]. Thus, if ~Q(oo, ]")/~]" > 0 
between two critical points of Q(oo, ]"), then V(1-') has a critical point at which V(1-') 
is smaller than Q(oo, ]") between the two critical points of Q(oo,/ ').  See Fig. 4. 
Similarly, if ~Q(oo, ]")/~]" < 0 between two critical points of Q(oo, ]"), then V(]") 
has a critical point at which V(I') is greater than Q(oo,/ ' )  between the two critical 
points of Q(oo, ]"). 

(2) dW(]")/dP < 0 for ]" < F2, and W(F) has at most one critical point for 

(3) sign dV(]")/dP = sign[V(]") -- W(]")]. 

(4) There exists a /-'~ > ]"1 such that OQ(oo, ]")/8]" > 0 f o r / "  e (]"1, P~) and 
eQ(oo, ]"2)/~]" = 0. 

(5) If  ~Q(oo, _P)/#]" = 0 at some ]" < ]"2, then at this point, Q(oo, ]") < 1, 
e~Q(oo, ]")/~]"2 > 0, and W(F) > Q(]"). 

/ - \  

l Q (oo,F) 

~ ,' / TIV(s 
Fig. 4 
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(6) If  at some P < / , 2 ,  say /,4, Q(o%/'a) < 1, aQ(oo,/ '4)/of '  = 0, and 
e2Q(oo,/ '4)/of '2 > 0, then steps 1 and 4 show V(/') has a critical point, say / ' 5 ,  such 
that V(/'~) < Q(oo,/'4). By step 3, V(/'5) = W(/'5). Then, by step 2, W(/'a) < 0(/'4). 
This last fact contradicts step 5 and shows that Q(oo, / ' )  can have no critical point for 
/~ < / , ~ .  See Fig. 5. 

(7) Since Q(o%/,) increases for small / ,  and decreases to one for large 
/1, Q(oo,/ ,)  must have an odd number of critical points. Thus, if Q(o% 1") has a 
critical point at s o m e / ,  > / , 2 ,  it must have at least two critical points. Let/,~ and/,7 
be the largest critical points smaller than/-'3 �9 See Fig. 6. 

(8) A contradiction will be established, given the existence of / ,6  a n d / , 7 ,  by 
showing that then V(/,3) > W(E'3), whereas by direct computation, V(.P3) = W(/,3). 

Q (oo,F) 

r 2 r 6 rT r' 3 i" 

Fig. 6 
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and 

The two comparison functions are defined as follows: 

Of~O~" + @/O/" 
v(F) = of/BF + Oh~B~" 

W(P)  = ~f/B/ '2 + B2g/O/'2 
02f/B~" 2 + B2h/O/" z 

To verify step 1, differentiate (61) and substitute (84) in the result to find 

BQ(oo,/ ')  of~B~" § Oh~a~" 
OF -- 1 + f + h [V(/') -- Q(oo, F)] 

and note that Bf/B/" and Oh/B~" are negative. 
We now verify step 2. Differentiation of (85) shows that 

sign -- sign / . . . . .  -~ 
dP  O/" 2 OF a OF 2 ] 0/" 8 ] \ BF ~ L 

(84) 

(85) 

(86) 

(87) 

To compute (87), note that 

B2f/0/ '2  = e~rl/o~ 

oF/0/" ~= J V ( I -  ~r) 
and 

OZg/B1 -'z = (e~a/oO E("r, [L -- 1] ~') E-1(--% 0) 

(88) 

(89) 

By (83), (88), and (90), (a~/B/" z -t- B2g/B/" 2) O~h/OF 8 ~ 0 for all ]" >/0.  By (87), 
sign[(OzU/O/" 2) �9 (a*f/B/'~)] = sign 02U/O~" 2. Part II implies that a2U/O/" 2 changes sign 
once from positive to negative. Therefore dW/d/" changes sign at most once from 
positive to negative. In particular, by part II, B2U/OF ~ > 0 if F > / ' 3 ,  and thus 
d W / d F  can only change sign i f / "  >~/"2. 

Step 3 follows from the equation 

dV  B2f/01 ~ -1- B2h/O/" 2 
dr'  = of/o_r" + Bh/BF ( W -  V) 

Step 4 is trivial. 
Consider step 5. If  0Q(~ , / ' ) /B/"  = 0 at some / "  > F~, then Q ( ~ , / ' )  < 1 by 

step 4. The remaining assertions follows from the equation 

~ = ~176 + 02h/B/'2 ( W -  Q) 
OF 2 1 + f +  h 

which holds whenever OQ/01-' = o. 
Steps 6 and 7 are self-explanatory. 
Finally, consider step 8. Figure 7 illustrates the source of contradiction. For 

/" > / / ' 7 ,  V > Q > w. Direct computation shows, however, that V(/'3) = W(1-'3). 

(90) 
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(F) 

Fig. 7 

r~ r 

Indeed, all the partial derivatives ~f/~T', ~g/~T', and ~h/eT' vanish at T' = F a and are 
negative in a left-neighborhood of F = Fo. Application of L'Hospital 's rule to (84) 
and comparison with (85) proves our claim, and hence the theorem. 

P r o p o s i t i o n  3. Let t ~ Lr. (I) f f  j > k, yj~(t) is a negatively accelerated, 
monotone-increasing function of k, where j = 2 ..... L and k = 1 ..... j -- 1. 
(II) I f j  < k -- 1, y~k(t) is a negatively accelerated, monotone-decreasing function of 
k, where j = 1 ..... L - -  2 and k = j +  2 ..... L. (III) yj.~+2(t)>ys.j+~(t) if 
Z(;~, F)  > AE(1) B(;t, 0), where Z(A, P)  = D(A --  T1, T 0 -t- T'C(T~, 0). Note 
that eZ(A, _P)/~F > O. 

Proof.  To prove I, we will show that ~yj~(t)/ak > 0 and a2yjk(t)/Ok2 > 0. By 
(20), (30), (33), and (37), the denominator of yjk(t) is independent of k. Thus, it 
suffices to show Ofi.k(t)/ak > 0 and a2.fjk(t)/ak2 > 0 fo r j  > k. Indeed by (22), 

afik(t)/ak = o~'rfik(t) and a%k(t)/ak 2 = (e~-c)2 fi.~(t) 

In proving II, we again note that the denominator of yjk(t) is independent of k. 
Thus, we need only show that 0fj~(t) < 0 and a%k(t)/ak 2 > 0 for j < k -- 1. This is 
clear by inspection of the following equations derived from (27): 

Ofi~(t)/Ok = - - a r A E ( k  - - j  --  1){B(A, 0) -t- �89 2[t -- (k -- 1)~']} 

_A2re-dt-(~-l)~][e-~(t-J~) _ e-~r~] 
and 

a%~(t) lek  2 = (~-d2AE(k - - j  - -  1){B(Z, 0) + �89 2[t - -  ( k  - -  1)r]} 
_+_ ar2A2e-~[t-(~-ZMe-~T= 
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For yj,~+l(t)> yjd+2(t) to be satisfied, it 
f,. j+l(t) >f~.,j+~(t). Since, clearly, 

�89 2[t -- jr]) + FAE(t  -- jr,  ~) 

> )A2E(2;~, 2[t -- (j -f- 1) ~-1) + PAE(t  -- [j + 11 r, )9 

(27) and (30) show that we need only prove 

D()~ -- T1, r l)  - - / 'C(A -- T1, Ta) > AE(1) B(~, 0) -- FC0~, 0) 

This inequality reduces to 

D(Z -- 7'1, Ta) > AE(1) B(?,, O) -- I'C(T~, O) 

which is the desired result. 

Stephen Grossberg and James Pepe 

suffices by (20) to show that 

8.  P A R A M E T R I C  S T U D I E S  

We now present the results of computer studies that were done to quantitatively 
illustrate the effects of varying the parameters ~ and _r' on the strength of primacy vs. 
recency. In addition, Q(oo, F)  and U(I') were studied for input functions not in the 
classes j l~  and jl~). The values of r and A will be held fixed at 37r/16 and ~r/8, respec- 
tively. 

Increasing I'. As we have seen in Theorem 4, for small _P, recency asympto- 
tically dominates primacy. This fact is illustrated in Fig. 8, where a = 3~-/16, F ~ 0, 

0.180- 

0.170-- 

0.160 - 

0.150 

0.140- 

0.150 I 

0.120 

- - - - / . . / ~ - ' ~ ' ~  YL-I, L ( t )  

Ill//"~/ / /  Y12 (f) 

/ 
/ 

I 1 I I I l I I i I I 
2r 5r 4~- 5r 6r 7r 8r 9r lOt l i t  12= 

t 

Fig. 8 
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and J(t) is a rectangular input pulse. Then, a s / "  is increased to 0.002 in Fig. 9, the gap 
between the asymptotic values of Yl~ and YL-1,L becomes smaller. Recency is losing 
ground to primacy due to the decreased sampling time of vl .  Finally, primacy 
dominates recency f o r / "  = 0.004, as is illustrated in Fig. 10. 
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Increasing c~. For small ~, the maximum ofyl~(t) is greater than the maximum 
of YL-I,L(t). This fact is illustrated in Fig. 8, where ~ = 37r/16,/" = 0, and J(t) is a 
rectangular input pulse. By increasing ~ and holding F constant, we do not decrease 
the number of  future list items vl can sample; hence, asymptotic recency will still 
dominate primacy for small _P. However, for large ~, the maximum ofyu( t )  is smaller 
than the maximum ofyL-a,L(t). See Figs. 11 and 12, where C is held constant at 0 and 
c~ = 5~/16 and 7~r/16, respectively. 

e(oo, r) and u(r). Let J(t) = sin(8t) if 0 ~< t ~< ~/8 and 0 otherwise. 
Then, Q(oo, / ' )  and U(F) are illustrated in Figs. 13 and 14, respectively. In addition, 
if J(t) = (8/7r) t for 0 ~< t ~< ~r/8 and 0 otherwise, then Q(oo, / ' )  and U(F) are given 
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by Figs. 15 and 16, respectively. These figures show that  the results o f  Theorem 4 are 
true for  larger classes of  inputs then j(2) and j(3), possibly for all inputs satisfying 
conditions (b)-(d). 

Chunking. These parametric  studies show a very pronounced  chunking effect 
in learning a list of  length L. That  is, if  the L items are presented in the form o f  sublists 
(chunks) each separated by sufficiently long intertrial intervals, then these sublists are 
easier to learn than the original list presented in its entirety. The data  on chunking 
were obtained by holding ~ a n d / "  constant  at 3~/16 and 0, respectively, while varying 
L. A typical set o f  data is the following. For  L = 5, y12(oo) = 0.25; for  L - -  10, 
Yz2(~) ---- 0.125; and for  L = 20, y12(t) = 0.05. Thus, i r a  list o f  length 20 is presented, 
we expect the associational strengths o f  successive list items to be on the order  o f  0.05. 
However,  if this list is broken into four  chunks each of  length 5, the associational 
strengths are now on the order o f  0.25. This fact shows a more rapid learning of  the 
chunks than o f  the original list presented in its entirety. Otherwise expressed, "pa r t "  
learning is easier than "whole"  learning. 
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